Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Environ Sci Pollut Res Int ; 30(16): 47800-47821, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2232148

ABSTRACT

Aquaponic system in greenhouses which can recycle and reuse the water and nutrients is gaining importance across the world to counter the uncertainties due to weather fluctuations. However, there is a slow pace of growth in aquaculture practices around the globe in general and India in particular. There are many barriers to adopt the aquaponic culture. In this study an analysis of the barriers for aquaponics culture in Indian context during the COVID-19 period is presented. Literature review and interactions with various stakeholders help to find out the list of potential factors while gauging the success of their prospective aquaponics project. The "best-worst" methodology (BWM) is employed for ranking of barriers, whereas categorizing of barriers is carried out with the help of fuzzy DEMATEL. Furthermore, the results of this research work are of great value to corporations or start-up companies looking to invest in this technology as well as to farmers who wish to adopt this farming technique.


Subject(s)
COVID-19 , Humans , Hydroponics/methods , Prospective Studies , Agriculture , Aquaculture/methods
2.
Environ Sci Pollut Res Int ; 30(12): 32278-32287, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2228821

ABSTRACT

Industrialized aquaculture is an essential trend for aquaculture development in China, owing to its considerable advantages in lower water consumption, higher productivity, and sustainability. However, information on its current status has been scarce up to now. This paper reviewed the current status and has identified existing problems as well as proposing possible solutions for the development of industrialized aquaculture in China. This field is still at an early stage of development and is mainly distributed in coastal regions. Major constraints on industrialized aquaculture include high capital and operational costs, the uncompetitive market price of aquatic products, uneven distribution of production and farming areas, a lack of suitably experienced managers and operators for recirculating aquaculture systems, and the coronavirus disease 2019 (COVID-19) pandemic. Possible solutions to these problems include technological innovations in systems optimization, the use of renewable energy sources and biofloc technology, the pollution-free certification of industrial aquaculture products, increased numbers of professionals in water quality control and waste management, and the financial assistance to companies and farmers along the aquaculture industrial chain.


Subject(s)
COVID-19 , Waste Management , Humans , Aquaculture , China , Water Quality
3.
Transbound Emerg Dis ; 69(5): e2341-e2350, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053015

ABSTRACT

Climate change will expose the food-producing sector to a range of challenges. Inland aquaculture farms are particularly vulnerable, due to the difficulty in changing their location, and therefore require specific tools to predict the influence of direct and indirect effects on production, environment and economic feasibility. The objective of our study was to apply a simple set of models to produce a set of growth, risk and suitability maps for stakeholders within the common carp sector in Poland, to assist decision-making under two different scenarios of climate change: a moderate situation (RCP 4.5) and an extreme situation (RCP 8.5). We used present (2000-2019) and future projections (2080-2099) for water surface temperature based on land surface temperature data from regionally downscaled climate models to draw maps to: (i) show optimal temperature conditions for carp growth, (ii) assess risk of disease outbreak caused by three important common carp pathogens: Cyprinid herpesvirus 3 (CyHV-3), carp oedema virus (CEV) and spring viremia of carp (SVCV) and (iii) predict potential suitability changes of carp farming in Poland. The study identified areas with the most and least favourable temperature conditions for carp growth, as well as those areas with the highest/lowest number of days with suitable temperatures for virus infection. These suitability maps showed the combined effect of direct and indirect effects of climate change projections under RCP 8.5 and RCP 4.5 scenarios. The approach applied herein will be of use worldwide for analysing the risks of temperature increase to land-based aquaculture, and the results presented are important for carp farmers in Poland and elsewhere, industry in general, and government stakeholders, to understand the direct and indirect effects of climate change on the triple bottom line of people, planet, and profit.


Subject(s)
Carps , Fish Diseases , Animals , Aquaculture , Fish Diseases/epidemiology , Humans , Temperature , Water
4.
Curr Environ Health Rep ; 9(3): 423-435, 2022 09.
Article in English | MEDLINE | ID: covidwho-1982406

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to summarize the impacts of the coronavirus disease 2019 (COVID-19) pandemic on aquaculture input supply, production, distribution, and consumption. RECENT FINDINGS: The COVID-19 pandemic-related lockdowns, social distancing, supply chain disruptions, and transport restrictions affect seafood production, distribution, marketing, and consumption. Recommendations are suggested to overcome these challenges. The COVID-19 has led to disruption of aquaculture practices worldwide. The pandemic has adversely affected the aquaculture input supply of fish stocking and feeding, which, in turn, has impacted aquaculture production. Moreover, the COVID-19 crisis has had adverse effects on value addition to aquaculture products, through the restrictions of seafood marketing and exporting. Aquatic food production is vulnerable to the effects of COVID-19 outbreak; hence, adaptation strategies must be developed to cope with the challenges. There is an urgent need for collaboration among key stakeholders to rebuild the supply chain of inputs and fish marketing for sustainable aquaculture practices. International agencies, donors, government and non-governmental organizations, researchers, and policymakers need to develop policies to support aquaculture production and supply chains.


Subject(s)
COVID-19 , Animals , Aquaculture , COVID-19/epidemiology , Communicable Disease Control , Fishes , Food Supply , Pandemics
5.
Sci Total Environ ; 819: 153073, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1621038

ABSTRACT

Advancing wet peatland 'paludiculture' innovation present enormous potential to sustain carbon-cycles, reduce greenhouse-gas (GHG) gas emissions and to transition communities to low-carbon economies; however, there is limited scientific-evidence to support and enable direct commercial viability of eco-friendly products and services. This timely study reports on a novel, paludiculture-based, integrated-multi-trophic-aquaculture (IMTA) system for sustainable food production in the Irish midlands. This freshwater IMTA process relies on a naturally occurring ecosystem of microalgae, bacteria and duckweed in ponds for managing waste and water quality that is powered by wind turbines; however, as it is recirculating, it does not rely upon end-of-pipe solutions and does not discharge effluent to receiving waters. This constitutes the first report on the effects of extreme weather events on the performance of this IMTA system that produces European perch (Perca fluviatilis), rainbow trout (Oncorhynchus mykiis) during Spring 2020. Sampling coincided with lockdown periods of worker mobility restriction due to COVID-19 pandemic. Observations revealed that the frequency and intensity of storms generated high levels of rainfall that disrupted the algal and bacterial ecosystem in the IMTA leading to the emergence and predominance of toxic cyanobacteria that caused fish mortality. There is a pressing need for international agreement on standardized set of environmental indicators to advance paludiculture innovation that addresses climate-change and sustainability. This study describes important technical parameters for advancing freshwater aquaculture (IMTA), which can be future refined using real-time monitoring-tools at farm level to inform management decision-making based on evaluating environmental indicators and weather data. The relevance of these findings to informing global sustaining and disruptive research and innovation in paludiculture is presented, along with alignment with UN Sustainable Development goals. This study also addresses global challenges and opportunities highlighting a commensurate need for international agreement on resilient indicators encompassing linked ecological, societal, cultural, economic and cultural domains.


Subject(s)
Aquaculture , Climate , Perches , Animals , COVID-19 , Communicable Disease Control , Environment , Humans , Pandemics , Wetlands
6.
Sensors (Basel) ; 21(24)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1594451

ABSTRACT

Water temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and salinity levels are the critical cultivation factors for freshwater aquaculture. This paper proposes a novel wireless multi-sensor system by integrating the temperature, pH, DO, and EC sensors with an ESP 32 Wi-Fi module for monitoring the water quality of freshwater aquaculture, which acquires the sensing data and salinity information directly derived from the EC level. The information of water temperature, pH, DO, EC, and salinity levels was displayed in the ThingSpeak IoT platform and was visualized in a user-friendly manner by ThingView APP. Firstly, these sensors were integrated with an ESP32 Wi-Fi platform. The observations of sensors and the estimated salinity from the EC level were then transmitted by a Wi-Fi network to an on-site Wi-Fi access point (AP). The acquired information was further transmitted to the ThingSpeak IoT and displayed in the form of a web-based monitoring system which can be directly visualized by online browsing or the ThingView APP. Through the complete processes of pre-calibration, in situ measurement, and post-calibration, the results illustrate that the proposed wireless multi-sensor IoT system has sufficient accuracy, reliable confidence, and a good tolerance for monitoring the water quality of freshwater aquaculture.


Subject(s)
Aquaculture , Water Quality , Electrocardiography , Fresh Water , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL